
38 The Delphi Magazine Issue 47

Under Construction:
Creative Debugging Techniques
by Bob Swart

It happens to all of us, even to the
best of us. We write programs,

and these programs contain bugs.
And more often than not, these
bugs hide themselves very well. I
need to fall back onto some cre-
ative debugging techniques more
often than not to diagnose what’s
wrong and remedy it. In this article,
I’ll cover some basic and less basic
Delphi debugging techniques,
including something special called
remote debugging.

Integrated Debugging
First things first, however. If we
want to locate and fix a bug in our
program, we need to compile and
link it with debug information
included. This is achieved by using
two compiler options: {$D+} to
include debug information that
maps object code addresses to
source code line numbers and
{$L+} (for local symbols), meaning
the names and types of all the local
variables and constants in a unit.
The $L directive is ignored if the
compiler is in the {$D-} state, by
the way. Setting these options
increases the size of unit files, but
does not affect the size or speed of
the final executable program. If we
compile a program with {$L+} then
Delphi’s integrated debugger gives
us the ability to watch and modify
local variables. In addition, we can
see all the calls to procedures and
functions in the call-stack window.
The great thing about Delphi 4 is

the fact that you can dock all the
debug windows so you have them
available while debugging. Also,
while we currently need to do this
again and again for every project
we want to debug, Delphi 5 will fea-
ture ‘named desktops’ (demon-
strated by Borland’s John Kaster at
a recent conference in The Nether-
lands), which will enable us to save
a ‘debug desktop’ where all these
views are open and docked by
default! Quite a handy feature,
which I will show in detail at a later
time, of course.

To actually debug with the afore-
mentioned Delphi 4 integrated
debugger, we don’t need to do any-
thing else. If we want to use an
external debugger, such as Turbo
Debugger, we should also specify
the Include TD32 debug info linker
option, as well as click on the
option to let the linker generate a
detailed MAP file. Turbo Debugger
is sold separately as part of Turbo
Assembler 5.0, for those who are
interested. We’ll just focus on the
integrated debugger here, which is
included in every version and
edition of Delphi, of course.

Before we start with actual
debugging examples, there’s one
more feature I would like to men-
tion, which is the Run | Parameters
‘host application’ feature, which
enables us to debug DLLs using the
integrated debugger, by specifying
the host application that will load
the DLL and call methods from the

DLL. This is one of the
most useful enhance-
ments made to the
integrated debugger,
since previously it was
necessary to (buy and)
use Turbo Debugger for
this purpose.

Distributed Applications
Assuming that we’ve all debugged
a Delphi program using the inte-
grated debugger before, I want to
focus on situations you may not be
familiar with yet: debugging dis-
tributed applications. We’ll start
easy with web server applications
(ISAPI, using WebBroker), moving
on to ActiveForms and N-tier appli-
cations. We’ll need more than one
active copy of Delphi to debug an
N-tier application on a single
machine. Finally, we’ll cover the
basics of remote debugging:
debugging a remote application
that runs on another machine! And
while these may not be exactly the
debugging tasks you’re carrying
out today, the day could well come
sooner than you think when
knowing how to debug distributed
applications will be absolutely
essential.

Debugging WebBroker
ISAPI Applications
Let’s start with debugging a web
server application. This usually is
a CGI/WinCGI or ISAPI/NSAPI appli-
cation. It doesn’t really matter, for
the sake of this example, whether
or not we’re using the WebBroker
components for these kinds of
applications, or whether we’re cre-
ating plain CGI or ISAPI applica-
tions from scratch. So let’s assume
we’re using WebBroker, which is
much easier anyway.

First, I want to focus on the most
sophisticated of the two solutions:
ISAPI DLLs. Of course, it is impor-
tant to test and verify these DLLs,
because they run inside the web
server’s memory space. When an
ISAPI DLL crashes, it can take the
entire web server (such as
Microsoft Internet Information
Server, IIS) down with it. And
believe me, you won’t make your-
self very popular doing just that.
Fortunately, Delphi has a built-in

➤ Figure 1: IntraBob as
the host application.

40 The Delphi Magazine Issue 47

feature that helps us to debug
ISAPI DLLs, based on the host
application option in the aforemen-
tioned Run | Parameters dialog.

As stated on page 28-23 of the
Delphi 4 Developer’s Guide, in this
dialog you can specify your web
server as host application for the
ISAPI DLL. However, this implies
that you need to start (and stop)
the entire web server every time
you want to debug your ISAPI DLL.
That seems a little bit like overkill.
To answer this need, I extended the
IntraBob CGI tester (first created
way back in Issue 19 and download-
able free from my website at
www.drbob42.com) to support
ISAPI debugging as well. All you
need to do is specify IntraBob as
the host application instead of
your web server.

Now, all we need is a starting
HTML web page that contains a call
to the ISAPI DLL. Once you run the
application (that is, once you start
to debug your ISAPI DLL), IntraBob
will start up instead. And Delphi
will wait until you click on the
submit button on the HTML web
page form, which is the trigger for
IntraBob to load the ISAPI DLL and
run it (that is, debug it from within
the Delphi IDE, meaning that you
can set breakpoints, and all the
usual debugging tasks).

This has been my preferred tech-
nique for debugging web server
applications for almost a year now.
It’s a shame that this method is not
mentioned in the Delphi 4 Devel-
oper’s Guide, but maybe that will
change with Delphi 5.

Debugging CGI Applications
Now, to debug a CGI executable is
actually quite hard, because you
need a web server to start the CGI
application (and we can only spec-
ify hosting applications in Delphi
for DLLs, not for executables). It’s
much harder than it is to debug an
ISAPI DLL. Fortunately, if we’re
using WebBroker technology, we
can work on one web module and
‘export’ it as both a CGI executable
(our initial target) and an ISAPI DLL
(in order to debug).

The trick is to use the Project
Manager and create a second
(empty) web module project. Then
remove the web module from it,
and add a reference to the web
module that’s used by the first
application. The full source code is
on this month’s disk for an exam-
ple, and you can see the effect in
Figure 2.

Apart from functioning as a host
application for ISAPI DLLs, my
IntraBob utility can also be used to
test CGI and WinCGI applications.

IntraBob has a few limitations
that you should keep in mind. First
of all, there is no support for the
ReadClient function, so any input
data over 48Kb is clipped. Also,
there is only limited support for
ServerSupportFunction, which
supports

HSE_REQ_SEND_URL_REDIRECT_RESP

and

HSE_REQ_SEND_RESPONSE_HEADER

but not

HSE_REQ_MAP_URL_TO_PATH

Finally, when you are
using IntraBob as a host
application, the ISAPI
DLLs are loaded and
unloaded directly, so
you cannot reproduce
true multi-threaded or
cached behaviour.

On the bright side, I’m
always working on
improvements for
IntraBob, and if you have
any suggestions, don’t
hesitate to email me!

Debugging ActiveForms
Another internet related tech-
nique is based on Microsoft’s
ActiveX and COM. Of course, I’m
talking about ActiveForms, a
client-side solution that works in
Internet Explorer (or in Netscape
too, with the right plug-in).
ActiveForms are OCX files, which
are actually plain DLLs with the
OCX extension. This means that
we can debug an OCX just like we
can debug a DLL, by specifying a
host application.

Let’s create a sample
ActiveForm (see Issue 22 for more
details of how to do this) that uses
some database tables (so we can
eliminate the Borland Database
Engine from it and turn it into a
thin client using TClientDataSet in
the next section). Create a new
ActiveForm, drop a Table compo-
nent on it, connect it to BIOLIFE.DB
from the DBDEMOS alias, and add a
number of data-aware controls to
display all the fields (sneaky hint:
add all the fields to the fields editor
and drag-and-drop them on the
form for a quick layout). Don’t
forget to put a DBNavigator on the
ActiveForm, as we need some way
to navigate through the table.

Assuming that we deployed the
ActiveForm to the local directory
d:\www\drbob42\ActiveX, then
to debug the ActiveForm, we need
to specify Internet Explorer 5 as
the host application, and pass the
name of the generated HTML file
(that is, d:\www\drbob42\
ActiveX\TDM47.htm) as the
start-up argument, see Figure 4.

➤ Figure 3: A ‘fat’ ActiveForm
client (requires the BDE).

➤ Figure 2: Project Manager,
CGI and ISAPI sharing the
same Web Module.

July 1999 The Delphi Magazine 41

This will almost work, but not
quite, since Delphi’s integrated
debugger will only get triggered if
Internet Explorer loads the very
same (physical) version of the
ActiveForm that Delphi created as
output (ie the tdm47.ocx file in the
current project directory). And
Internet Explorer will not load that
particular copy of our ActiveForm,
but rather it will pick up the
deployed version from the
d:\www\drbob42\ActiveX\ direc-
tory and copy if to either the
OCCACHE directory (for Windows
95) or the Downloaded Program
Files directory (for Internet
Explorer 5 on my Windows NT
machine) and load the OCX from
that particular directory.

In order for Delphi to know that
Internet Explorer is loading the
Delphi version of the ActiveForm,
we should set the Output Directory
to that location, using the Project |
Options dialog.

This will make sure that after
each rebuild or recompile the
ActiveForm will be placed in the
C:\winnt\downloaded program
files\ directory. During the
‘deployment’, the ActiveForm will
be copied to the D:\www\
drbob42\ActiveX\ directory.
When we run the application,
Internet Explorer will pick up the
file from the D:\www\drbob42\
ActiveX\ directory, copy it to the
C:\winnt\downloaded program
files\ directory (overwriting the
one we just created when we com-
piled the program, but with the
same version), and load the
ActiveForm from that directory.
Now, Delphi will know that the
ActiveForm (currently being
debugged) is indeed the one
loaded by Internet Explorer, so it

will use the integrated
debugger on it.

Debugging
N-Tier Applications
We can turn the ActiveForm into a
thin client by removing the Table
component, replacing it with a
TClientDataSet component. Of
course, we then need some sort of
middleware application, for exam-
ple a remote datamodule using
DCOM as the communication pro-
tocol. The ActiveForm would then
also need a DCOMConnection compo-
nent to actually receive packages
of records from the middleware
server (see Issue 38 for more
details of this).

In order to debug both the
ActiveForm client (using Internet
Explorer 5 as the host application)
and the middleware data server,
we actually need two running
copies of Delphi: one with the
ActiveForm project, specifying
Internet Explorer 5 as the host
application (see above), and the
other running the middleware
server.

Remote Debugging
Sometimes, debugging distributed
applications on one machine isn’t
possible, or doesn’t yield the
required result. In some cases, we
really need to simulate the ‘real
world’ situation as much as possi-
ble, meaning that we need to debug
an application that runs on
another machine. This is called

remote debugging,
and requires two
machines that are
connected via TCP/IP.

In order for remote
debugging to work, we
need to install the
‘debug server’ (which

is the file borrdbg.exe, which can
be found in the RDEBUG directory
on the Delphi CD-ROM) on the
remote machine, that is, on the
machine where the application
runs that we want to debug with
our ‘local’ machine, as if it were
running on our local machine. On
our local machine, we only need to
run the Delphi IDE itself. The
debug server will then control the
remote program being debugged
using a network connection to
communicate with our local
Delphi IDE.

Now, on the remote server, we
first need to start the remote
debugger using the -listen com-
mand line option (alternatively, it
can be installed as an NT service,
which means it always runs):
BORRDBG.EXE -listen.

Once the debug server is run-
ning, we need to load the project
source file, click on the include
remote debug symbols option in the
Linker page, and set the Remote
Path in the Run | Parameters dialog
to the executable name on the
remote machine (note: for the

➤ Figure 5: Point Output
Directory to the IE5
downloaded program
files directory.

➤ Figure 4: Internet
Explorer 5 as the
host application,
ActiveForm as the
argument.

➤ Figure 6: Debugging
CGI.exe project on
a remote machine.

42 The Delphi Magazine Issue 47

Remote Host entry either the
machine name or IP address will be
sufficient).

If we now run the application, we
can set breakpoints in the local
source of the project, but the pro-
ject on the remote host is exe-
cuted. Stepping through the
source on the local machine also
actually steps through the object
code on the remote machine,
which is quite an experience to see,
and necessary from time to time.

Next Time
We’ve seen how to debug ISAPI and
CGI web server applications,
ActiveForms and N-tier applica-
tions. Lastly, we covered the
basics of remote debugging.

Next time, I’ll be showing you
how to make Delphi go dynamic:
dynamically creating components
on a form and also dynamically
assigning event handlers to these
components. It’ll be fun, I promise
you, so stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com, email him at
drbob@chello.nl) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder,
and a freelance technical author.
In his spare time, Bob likes to
watch video tapes of Star Trek
Voyager and Deep Space Nine
with his 5-year-old son Erik Mark
Pascal and his 2.5-year-old daugh-
ter Natasha Louise Delphine.

	Integrated Debugging
	Distributed Applications
	Debugging WebBroker ISAPI Applications
	Debugging CGI Applications
	Debugging ActiveForms
	Debugging N-Tier Applications
	Remote Debugging
	Next Time

